further, less well-expressed or preserved architectural remains are to be expected in the subsurface. A high-definition GPR or Electromagnetic Induction (EMI) Survey would be advisable for a more detailed non-invasive investigation of this area.

Due to the shallow depth of the detected structures, all areas surveyed in 2012 and 2014 should only be used agriculturally as pasture. Ploughing with powerful tractors is very likely to destroy the detected archaeological remains in few years. The archaeological prospection surveys conducted in 2014 have once again demonstrated that the most promising sustainable approach for the investigation and understanding of the structure and layout of this major Cypriot prehistoric site would be a large-scale (60–100 ha) non-destructive geo-physical archaeological prospection survey using a combination of high-resolution GPR and magnetics. Comparable non-invasive prospection approaches can be found at the Late Cypriot sites of Maroni\(^{50}\) and Kalavasos-Ayios Dhimitrio.\(^{51}\)

High-resolution EMI survey and laser scanning or airborne structure-from-motion measurements for the generation of a detailed topography model would complement this state-of-the-art archaeological approach, to the considerable benefit of a much-needed, long-term site management plan.

Appendix 2:

Pottery studies: Mycenaean and Aegean imports, and rhyta

Mycenaean and Aegean pottery from Hala Sultan Tekke 2013 and 2014

BY L. MAZZOTTA & L. RECHT

INTRODUCTION

At Hala Sultan Tekke, as is common at Late Bronze Age sites on Cyprus, Aegean or Mycenaean-imported pottery is an important part of the ceramic assemblage, especially as it provides important data contextual evidence and clues to the site’s broader connections on Cyprus and in the Eastern Mediterranean. Here we present the Aegean/Mycenaean pottery from the 2014 excavations, along with some further conclusions concerning the collection from the 2013 season, and continuing the analysis from 2013.\(^{52}\) We will describe the nature of the combined assemblages in terms of chronology, shapes, functions and the implications of their presence at Hala Sultan Tekke for trade networks and local production.

COLLECTION AND ASSEMBLAGE

During processing of the pottery for each locus from the 2013 and 2014 seasons, the Mycenaean sherds were separated from the remainder of the assemblage. These were then analysed, recording trench, locus, stratum, type of sherd (body sherd, rim, base, handle, complete vessel) and, whenever possible, shape (open, closed, jar, bowl, cup etc.), size, decoration, date and functional category. Shape and decoration were categories according to Furumark’s system whenever possible, and the functional classes the same as those used in 2013 (see below). The studied sherds from 2013 come exclusively from the settlement, while the sherds from 2014 originate partly from the settlement, partly from Area A, an area of burials, offering pits.

\(^{49}\) Trinks et al. 2012.
\(^{50}\) Manning et al. 2014.
\(^{51}\) Urban et al. 2014.
\(^{52}\) See Mazzotta & Trecarichi 2014.
and wells. From the settlement, we have a total of 312 sherds (210 from 2013 and 102 from 2014), and 93 from Area A. The majority of the pottery consists of sherds—there are very few complete vessels, and these all come from tombs or wells. They are instead from settlement contexts that suggest reuse in floors or fills. This means that in most cases we do not have their primary use context, and consequently their merit as tools for precise dating is limited, according to Mazzotta and Tecarichi.

“AEGEAN” VS “MYCENAEAN” POTTERY AND LOCAL IMITATIONS

The sherds were categorized based on technology, morphology and decoration; we do not include sherds of local production that imitate the Mycenaean style. We use the word “Mycenaean” as shorthand to refer to the pottery imported from the Aegean into Cyprus; however, these “Mycenaean” sherds include sherds which we have labelled “Aegean”. That is, they are imports from the Aegean sphere, but do not appear to come exclusively from Mainland Greece. They may instead have been transported from islands like Rhodes or Kos, but in most cases it is not possible to determine their place of manufacture more precisely other than to suggest that they were part of a south-eastern Aegean koine. In this study, the distinction between Aegean and Mycenaean pottery is made on the basis of macroscopic technological analyses, since differences in shapes and systems of decoration are minimal. “Aegean” sherds are usually characterized by a high content of mica, orange-reddish fabric, fine to medium-fine clay, and dull to matt paint (sometimes careless painted and careless surface treated), rather than the typically light pinkish-brown fabric, fine clay and lustrous shine paint of the Mycenaean Mainland production. Even following these characteristics, we acknowledge that it is not always easy to determine, even broadly, the original place of production of a specific sherd and to differentiate between Mycenaean production from the Peloponnese and Mainland Greece, Mycenaean production from the south-east Aegean and local imitations of Mycenaean production.

CHRONOLOGICAL DISTRIBUTION

With the possible exception of a handful of sherds, which could date as early as LH II – B, all of the sherds and vessels belong within LH III (Fig. 37). Apart from the possible LH II sherds, the earliest examples occur in LH IIIA1 and the some may be dated as late as LH IIIC Middle. However, there is a clear clustering from LH IIIA2 to LH IIIB2; this pattern is clear in both Stratum 1 and Stratum 2 from 2013, and in both settlement and Area A from 2014. These dates refer to manufacture, but it is likely that they found their way from the Aegean to Hala Sultan Tekke not long after manufacture since they are found mainly in settlement contexts. The decrease in Mycenaean imports from Mainland Greece in LH IIIC coincides both with the rise of a LH III C Middle south-east Aegean koine and with an increase in the production of local pottery which to some extent imitates the techniques and shapes of the Mycenaean pottery, suggesting either a restriction in access to the imported pottery (and its contents), or that it was beginning to lose its value. The former seems more likely, given the broader historical circumstances of the period and possible change or collapse of certain trade routes.

SHAPES AND FUNCTION

In some cases, we were able to identify the specific shapes of the vessels. From a typological point of view, piriform jars and stirrup jars (total of 72) are by far the most common, but kraters also form a significant part of the assemblage (total of 47). Bowls (22), cups (17), kylikes (14) and rhyta (8) are less numerous, and alabastra (3), chalices (3), jugs (3), goblets (2), feeding bottles (1) and mugs (1) are rare. The sherds were also divided into open and closed vessels, and placed in functional classes based on: tableware (F1), sub-divided...

53 Possible exceptions include part of a deep bowl and the lower part of a miniature piriform jar from floor-like surfaces in Trench 19B (L452 and L471).

54 Mazzotta & Tecarichi 2014.

55 This production is essentially that of WPWM III, see Mazzotta & Tecarichi 2014.

56 There is as yet no exact consensus on terminology. Mountjoy 1999, throughout refers to it as “regional Mycenaean” pottery; Buchholz 1999, throughout uses “Aegean” where it is not possible to decide the exact origin—including Crete and Mainland Greece; Leonard 1994, 6–7 prefers “Aegean” or “Late Helladic”; and van Wijngaarden 2002, 3 wants to limit the term “Mycenaean” to the Greek Mainland, while recognizing that it is not always easy to distinguish from other Aegean types. The terminology becomes even more muddled concerning local productions that imitate pottery from various parts of the Aegean. Lehmann, who himself prefers “Aegean-style” or “Aegeanizing pottery”, provides a good discussion of the topic. See Lehmann 2013, esp. 306–309.

58 Except in a few instances, where we can with some certainty determine a south-east Aegean provenance based on style—for example two fragments from a globular stirrup jar from Area A, TBL13 (HST14TI-BL13-2) dated to LH IIIC Early-Middle developed and an almost complete shallow cup FS 220 from Area A, TBL11 (HST14TBL11N7) dated to LH IIIA2-B (personal discussion with Prof. Mario Benzi; cf. Mountjoy 1999, ch. 11 and Benzi 1992, 69–103, 121–122).

59 See for example the nearly complete piriform jar found in Stratum 1 in 2013, which appears Mycenaen in style, but is marked as local production by its decoration and manufacturing technique (Fischer & Bürge 2014).

60 See also Mazzotta & Tecarichi 2014 for explanation of the classification and further literature on the subject. For the functional classifica-
into drinking sets (F1.1; further divided into F1.1a mixing vessels, F1.1b pouring vessels and F1.1c drinking vessels) and eating/drinking vessels (F1.2); small containers (F2); storage vessels (F3); and ritual vessels (F4).\(^6\) Overall, the sherds are almost evenly distributed between open and closed vessels (Fig. 38)—with only a difference detectable between

6. This category here only contains conical rhyta; we have decided to keep them in this category although they are likely to not have been used only for ritual purposes, but also as filtering vessels, perhaps as a part of ritual.
Stratum 1 and 2 in 2013, where open vessels were slightly more popular in Stratum 1, and vice versa in Stratum 2, and between the excavations in 2013 and 2014, which may reflect that we have reached lower strata in 2014, thus corresponding more closely to Stratum 2 of 2013. When moving to the functional categories, we see a strong preference for vessels of the F1 and F2 types (Fig. 38). In the 2013 assemblage, F1 shapes predominate, and these are still very important in the 2014 assemblage, but F2 vessels become even more visible. This distribution means that Mycenaean shapes most appreciated by the Cypriots were tableware (71% in the 2013 assemblage, 38% in the 2014 assemblage) and small containers (16% in the 2013 assemblage, 45% in the 2014 assemblage).

Among the F1 tableware, mixing vessels (F 1.1a: kraters—29% in the 2013 assemblage, 42% in the 2014 assemblage), drinking vessels (F 1.1c: cups and kylikes—30% in the 2013 assemblage, 39% in the 2014 assemblage) and eating/drinking vessels (F1.2: deep bowls—32% in the 2013 assemblage, 18% in the 2014 assemblage) far outnumber the few pouring vessels (F1.1b: only found in the 2013 assemblage, where it constitutes 9%). In the 2014 assemblage, we can also note a difference between Area A and the settlement within the F1 vessels: kraters are the most common type in Area A (50%), while cups are kylikes dominate in the settlement (51%).

The F1 types of vessels must have been imported for their function, and given that they are tableware, they would have been very visible, objects that would have been displayed to dinner guests, having both a practical and a social function. In contrast, the small containers are more likely to have been imported for their contents. Containers like alabastra and small to medium-sized stirrup and piriform jars would have held a fairly precious material, for example wine, olive oil or aromatic oils produced in the Aegean. These uses suggest that Mycenaean pottery affected a certain sense of status, but their relatively high frequency across sites (but usually in low percentages of the total pottery assemblages) on the island and in many different contexts at the same site (as at Hala Sultan Tekke) means that not just the wealthiest people could afford this level of luxury. That is not to detract symbolic or social

62 For 2014, the sherds have not been divided into strata in this appendix, because much disturbance of the soil has taken place due to modern ploughing activity, and as a consequence, very few Mycenaean sherds can with certainty be assigned to Stratum 2.

63 See also Steel 1998, 286.

64 Steel 1998, 292 and McGeough 2007, 360–361 see Aegean pottery as luxury items. Steel is able to identify a distinction between the use of certain shapes in elite and non-elite activities, with drinking sets (equal to our F1 category) being only available to or used by elites, mostly in funerary contexts, while small containers (equal to our F2 category) were also
value from the Mycenaean pottery; on the contrary, status would have been gained precisely due to the élite association, and the pottery would be one strategy of non-élites to emulate élite status or élite activities.65 It is possible, as suggested by McGeough based on tablets from Ugarit, that access to these goods was mainly or only available through élite mediators.66

SPATIAL DISTRIBUTION

Discussing first the spatial distribution of the Area 6W sherds excavated in 2014, we can initially note a clear preference of closed shapes, and that all sherds cluster in outdoor areas; the few sherds found inside buildings come from loci above the building itself (in T16B), and therefore belong to later events. The sherds are clearly concentrated in the open spaces of T12A and especially T12B. The fact that most of the sherds are here found in open spaces attest to the low stratigraphic reliability of these sherds; the broken ceramic material was most likely used in various fill layers to create walking surfaces, a suggestion supported by the large amount of \textit{WPWM} ware also recorded here. However, the concentration of closed vessels and F2/F3 types indicate that the fill itself may originally have come from a limited area where the focus was not on eating and drinking, but rather on storage and perhaps trade of the precious commodities held by small containers.

For Trenches 14B, 14C and 19B (Fig. 39), we have a more homogenous distribution of open and closed shapes, with two main areas of concentration; west of Wall 55 in T14B and west of Wall 62 in T19B. The area west of Wall 55 is probably an outdoor/covered outdoor working area with a pebble surface, and the sherds here appear to come from a fill, presenting a situation parallel to that in the outdoor area of T12A–B. We can again note the prevalence of closed shapes/F2 shapes. The area west of Wall 62 is instead an indoor area with a sequence of white calcareous floors, and a more even distribution of the types of pottery. The sherds here are more likely to have a higher level of stratigraphic reliability, and do not appear to constitute part of a fill in the same manner as the other areas. The difference in distribution in these two areas may in fact reflect the different nature and function of the two spaces.

The distribution of the sherds from 2013 is less revealing, but we may note that in Stratum 1, all types cluster in the northern area, in trenches 12D and 12C, immediately south of the 2014 trenches 12A and 12B, where we saw a clear concentration. The interpretation of these as fill to create outdoor walking areas can also be applied here—the sherds that may have come from “inside” a building still belong to Stratum 1, but actually come from loci above the structures. In Stratum 2, we instead have a situation where it seems that the majority of the sherds come from indoors areas. This could in some cases indicate a more secure stratigraphic context, for example in Rooms 33 and 34 in the east of T10C. The sherds here come from tableware vessels, which may hint at the function of these rooms.

CYPRUS IN THE EASTERN MEDITERRANEAN

The presence of Mycenaean pottery at Hala Sultan Tekke confirms the already well-known fact that Cyprus had extensive contact with surrounding areas. From the “Aegean” pottery, we can further note that pottery was imported not just from the Greek Mycenaen influenced Mainland, but also from what has traditionally been considered “peripheral” areas of the Aegean, perhaps a south-east Aegean \textit{koine}. In the data so far, we do not detect a preference for specific shapes or functions in relation to origin—there is a fairly equal distribution of shapes in the “Mycenaen” and “Aegean” categories—so it is not the case that specific shapes (or products) were selected from certain parts of the Aegean. However, there is a slight chronological distinction, where it appears that the “Aegean” pottery is more prominent in LH IIIC,67 when the Mycenaean decreases (Fig 37). This supports the suggestion that Mycenaen pottery was beginning to be restricted due to a limitation of Mycenaean commerce to the east, and other venues were sought to replace the goods acquired. Similar conclusions have been reached for Syria and the Levant, where imported Aegean and Mycenaen vessels increasingly appear to be replaced by local production imitating the Aegean style in LH IIIA—as well as by Cypriot manufacture imitating the Aegean style.68 It could then be the case that the Cypriot import of Aegean pottery and the local Cypriot production intensified not only to fulfil demand on Cyprus itself, but also in order to export to the east.69

65 See also Aspiotis 2003, 13–18 for a discussion of Mycenaean pottery as a luxury item and the social and symbolic value given it by élite usage and transformation of objects (at Ugarit, but equally valid for Cyprus).

66 McGeough 2007, 360–261.

67 In her study of the LH IIIC Middle period in the Aegean, Marina Thomatos reached the conclusion that although the palaces had collapsed, there were still ruling centres, albeit not as strong—and other regions, such as the south-east Aegean with Rhodes, experiencing a floruit during this period. See Thomatos 2006, 252–260.

68 See Lehmann 2013, throughout, but esp. 315–316.

69 Incidentally, there is evidence of Cypriot merchants/craftsmen residing at Ugarit, not only from the material found there, but also in the textual records. See McGeough 2007, 362–363.
CONCLUSIONS

The “Mycenaean” pottery from Hala Sultan Tekke from the 2013 and 2014 seasons mainly consists of shapes of various types of tableware and small containers. Larger storage vessels and ritual/industrial vessels are less common. From a technological point of view, the pottery can be divided into “Mycenaean”, which probably originates from the Greek Mainland, and “Aegean”, whose origin we cannot in most cases pinpoint more specifically, but at least some appear to come from south-east Aegean islands like Rhodes. No difference was detected in shape between these two categories, but there is a chronological indication that the Mycenaean pottery was more common in LH IIIA–B, while the Aegean pottery becomes more prominent in LH IIIC Early–Middle.
This overview can be placed in the general picture of eastern Mediterranean exchange, where Mycenaean and Aegean pottery does continue to be found, but Cypriot and local productions imitation the Aegean style of pottery is on the rise in LH IIIIC.

Rhya at Late Bronze Age Hala Sultan Tekke

BY L. RECHT & L. MAZZOTTA

INTRODUCTION

During the excavation seasons of 2013 and 2014, eight possible rhyta fragments were found at Hala Sultan Tekke. Apart from no. 1, which possibly dates as early as LH IIA, the fragments all belong to Mycenaean conical rhyta of the LH IIIA–B period, and can be added to fragments from a further eight examples found in previous excavations at the site. Since Aegean-imported rhyta are relatively rare on Cyprus, these constitute a significant addition to the examples known to date. We here provide a catalogue with the examples from Hala Sultan Tekke, along with a brief discussion of their function and context within Cyprus and the eastern Mediterranean.

THE HALA SULTAN TEKKE FRAGMENTS

With the exception of three examples, the sherds all belong to Type III in Robert Koehl's classification system of rhyta. Rhyta are vessels with one larger, "primary" opening, and a second, smaller opening, usually around 0.5 cm in diameter. Type III rhyta are vessels that are footless (and consequently not able to stand upright on their own) and with a wide primary opening.

The Hala Sultan Tekke conical rhyta are characterized by their straight sides, relatively thick wall and often uneven, not burnished interior. The fragments are not large enough to determine if they belong to the straight conical or convex conical type, since convex conical rhyta do also have parts of the profile where they are straight. The three fragments that are not conical are nos. 10, 15 and 16. No. 10 probably belongs to a piriform rhyton of Type II or III, footless with a narrow or wide primary opening. No. 15 is instead a jug-shaped rhyta, belonging to Type IV, footed with a wide primary opening; and no. 16 is a fragment from a so-called "fish" rhyton, Type II figural, footless with a narrow opening.

ARCHAEOLOGICAL CONTEXTS AND STATE OF PRESERVATION

The Hala Sultan Tekke rhyta presented here are all fragmentary; no complete vessels were found, and only in two cases do we have several fragments probably belonging to the same vessel (nos. 12 and 13). Their fragmentary state of preservation, and the type of context show that they are not found in situ, in the sense that they are not found as they had been used when they were complete vessels; the find contexts instead represent reuse of the vessels as sherds primarily in fill deposits. However, we can be fairly certain that the complete vessels were at some point in use at Hala Sultan Tekke, and this in itself is quite remarkable for Late Bronze Age Cyprus, because this vessel type is quite rare, and only at Enkomi do we find a similar concentration. What is especially significant about the Hala Sultan Tekke rhyta is that we have so many from settlement contexts, whereas to date, the majority come from tombs (Fig. 40).

RHYTA AT HALA SULTAN TEKKE—TYPES AND FUNCTIONS

Furumark and Mountjoy classify conical rhyta as closed vessels, largely because they typically have an unfurnished interior. However, this is slightly deceptive in terms of function, because they are not closed in the sense that they are able to hold their content in the way a jug or jar can—not in fact in the way common open shapes can. Their shape makes it unlikely that they were used for usual types of pouring, storage or drinking/eating. In order to hold their contents for a longer period of time, the secondary opening would have to be plugged. From the Aegean, there is no evidence for such a practice, but there are small indications that local transformations of the function took place elsewhere: depictions of rhyta on Egyptian wall-paintings may in a few cases be understood to show a plug for the rhyton. Rather than being a container for keeping its contents, the conical rhyton may have been used in small scale production as a kind of filter, for example as a tool for flavouring wine, as suggested by Koehl.

Strainers for this purpose must have been made of a perishable material, as these are not found with rhyta in the Aegean.

70 The fragments are presented in the catalogue at the end; numbers refer to this catalogue.
71 Koehl 2006.
72 See Koehl 2006, 5–7 for discussion and 9–12 for exceptions.
73 The numbers refer to the catalogue.
74 See Furumark 1941 and Mountjoy 1986, 1999 throughout.
75 See e.g. Brack & Brack 1980, pl. 37b, Tomb of Horemheb.
76 Koehl 1990, 356–357; 2006, 269). This idea is supported by the one conical rhyton subjected to chemical analysis from the Aegean; it appears to have contained wine and barley beer. See Tzedakis & Martlew 1999, 171, no. 164.
However, as with the plug, there are hints of local adaptations of usage, because rhyta and strainers have been found placed together (at the Egyptian site of Tell el-Dab’a, conical rhyta made of local clay and with separate but fitting strainers\(^77\)) or with strainer as part of the actual rhyta (at Ugarit, a Base Ring rhyton with plastic bovine head decoration\(^78\)). Although strainer vessels have been found at Hala Sultan Tekke,\(^79\) they are not as of yet associated with rhyta.

Due to the characteristics of this unique shape, it therefore seems that conical rhyta were not imported to Cyprus for the sake of their content, but must instead have been valued for their function and/or symbolic associations. Those symbolic association may relate both to the vessels as exotic prestige items and to their possible use in ritual contexts. If they were in fact used as filters in final-stage wine/beer production, that in itself would not constitute ritual action, but this production may have been part of a broader ritual which could have included feasting and the consumption of alcoholic beverages.

RHYTA IN CYPRUS AND THE EASTERN MEDITERRANEAN

While pottery imported from the Aegean is common at Late Bronze Cypriot sites, rhyta are rarely included in the assemblages—in fact, only Hala Sultan Tekke and Enkomi have substantial amounts (see Fig. 41). At these sites, there is a very clear preference for Type III rhyta, primarily of the conical and piriform types, but also a few head-shaped rhyta. When we turn our attention to the production of rhyta in local wares, the pattern is very different (see Fig. 42). Only three examples of Type III rhyta occur,\(^80\) with the majority consisting of Type I figural rhyta. These are mostly bovine rhyta, footed with a narrow primary opening.\(^81\) This variation in local and imported rhyta types supports the functional conclusion that the types were in fact used for different purposes. The Type I rhyta would have required a definite pouring action, for example suitable for libations.

Interestingly, more Type III Cypriot-produced rhyta have been found outside Cyprus than on the island itself; at nearby Ugarit and its harbour Minet el-Beida on the Levantine coast, five Cypriot piriform rhyta have been found. Although the total number of examples is quite low, this suggest local production deliberately aimed at export eastward, a case which is mirrored in the Mycenaean production of hedgehog rhyta.\(^82\) Cyprus may have acted as an intermediary in the trade from Mycenae and the rest of the Aegean to the Levantine coast\(^83\) (especially Ugarit), in some cases itself producing imitations of the Aegean shapes to fulfill demands.

\(^{77}\) See Hein 1994, 244–245, nos. 310 and 314.

\(^{78}\) See Schaeffer 1936, 110, fig. 4; Yon 1980, pl. 13.3.

\(^{79}\) Usually belonging to spouts of locally made closed vessels, rather than the open type from Egypt, see e.g. Aström 1989, 73–74, fig. 136f; Aström et al. 1983, 110, fig. 322c; and Hult 1981, 31, fig. 80a.

\(^{80}\) One piriform with an internal cone from Enkomi, Koehl 2006, no. C3; one unique ivory conical from Atheniou, Dorhan & Ben-Tor 1972, 208; Koehl 2006, no. C9; and one conical decorated faience from Kitsion, Koehl 2006, no. C10. See also references for Fig. 3. All these are unusual types of rhyta even in Aegean contexts due to their special features, material and/or decoration.

\(^{81}\) See Recht 2014.

\(^{82}\) See Recht 2014.

\(^{83}\) For further discussions on this topic, see e.g. Grazia 1997, 687–691; Knapp & Cherry 1994, 30–32, 131–132; Whittaker 1992; Cline 1994, 37, 61, 63; and Gilmour 1992, 115, 118. For post-firing Cypro-Minoan potmarks on Mycenaean pottery found in the Levant as evidence of Cypriot intermediary trade, see Hirschfeld 1992, 315–319 and 1993, 311, 318. For Cypriot-Levantine relations, see also Knapp 1996.
Fig. 41. Late Bronze Age sites on Cyprus with Aegean rhyta and their distribution. Data for Figs. 40–41 comes from: Åström 1989, figs. 143, 147; Åström et al. 1983, figs. 56b, 330b; British Museum Vases C601, C603-C607; Courtois 1981, figs. 150.3, 159 (284 and 108); Dikaios 1969, pls. 67.7, 69.20, 110.2–3, 131.32a, 131.37, 164.2–3, 210.47–48; Karageorghis 1963, pl. 33.1; Koehl 2006, nos. 61, 357, 358, 359, 400, 403, 588, 591, 600, 607, 615, 697, 704, 1149; Megaw 1952, fig. 2; Murray et al. 1900, figs. 6(983), 67 (1077), 68 (1091), 75 (1114), 124 (28); Öbrink 1979, figs. 150b, 159a–c, 180a–e; Schaeffer 1932, pl. IV, 1; Schaeffer 1936, fig. 4. Smith 1925, pl. 11.2; Taylor 1957, fig. 20 (187); Vermeule & Karageorghis 1982, V.125 and V.132; You 1980, pls. 13–14.

Fig. 42. Distribution of Late Bronze Age Cypriot-produced rhyta. Data used to create figure comes from: British Museum Vase C705, Terracottas A6, A25–A29, A31, A41, A54; Dikaios 1969, pls. 131.32, 136, 137.20, 137.21; Dothan & Ben-Tor 1972, 208; Koehl 2006, nos. C1, C2, C3–C9, C10; Malmgren 2003, pl. 12b; Murray et al. 1900, figs. 62 (1240), 71 (958), 74 (1176), 109 (94); Smith 1925, pls. S.23, S.25.
CONCLUSION

The small but significant number of Aegean-imported rhyta found in excavations at Hala Sultan Tekke constitute an important addition to the few examples already known from controlled excavations. What is more, many come from settlement contexts, which is unusual for this shape. Conical/Type III rhyta predominate, indicating a use related to liquid, in particular last-stage production of wine or beer, perhaps corresponding to events which also involve the many Aegean and Mycenaean vessels related to drinking and eating. A similar pattern at a much more extensive scale can be seen in the Levant in Ugarit, where the textual evidence shows strong and systematic economic relations with Cyprus.84 In Ugarit/Minet-el-Beida, Aegean conical rhyta are abundant and not only attested in ritual and funerary contexts,85 but also in different settlement contexts from many areas of the site, both belonging to “middle class” and to wealthier households, and often associated with Mycenaean and Cypriot mixing and drinking sets.

Mycenaean rhyta in Ugarit seem have had both practical and a social functions; they are vessels not only associated with ritual activities, but also the production and consumption of beverages. Further, having a symbolic value as exotic objects, they were means of signalling membership of elite households directly engaged in international trade or of emulating wealth and status by indicating at least an indirect participation in the same international connections. In light of the archaeological evidence, these social considerations can also be considered relevant to Cyprus and Hala Sultan Tekke in particular, underlining the role of Cyprus in the export of the “Aegean-style” rhyta to the Levantine Area. Finally, the types of rhyta imported to Cyprus are distinctly different from the locally made examples, suggesting a clear differentiation in function and a closer association to ritual of the local ones.

CATALOGUE OF RHYTA (FIG. 43)

FS and FM refer to shapes and motifs used by Furumark 1941 and Mountjoy 1986, 1999; Koehl Types refers to shapes used by Koehl 2006.

No. 1. Body sherd of conical rhyton (HST13T10AL311-1), Fig. 43:a.
Max h. as preserved 5.6 cm; th. of wall 0.9–1.2 cm.
Description: Pink clay with pinkish buff slip, red-dark brown. paint. Spiral/floral decoration. Uneven interior.

85 See e.g. Yon 1987 for Temple aux Rhytons and Schaeffer 1949, 152, fig. 58:8; Courtois & Courtois 1978, 308 no. 15 for tombs.
86 See e.g. Schaeffer 1949, 218, fig. 91:4, 224, fig. 94; Courtois & Courtois 1978, 308 no. 18.
No. 7. Body sherd of conical rhyton (HST14T19BL440-2), Fig. 43:g.
Max h. as preserved 4.5 cm; th. of wall 0.7–0.8 cm.
Description: Pink clay with buff slip and linear red decoration.
Type: FS 199. Koehl Type III conical rhyton, indeterminate.
Date: LH IIIA2–B1.
Context: Trench 19B, Locus 440, settlement.

No. 8. Body sherd of conical rhyton (HST14T14CL462), Fig. 43:b.
Max h. as preserved 3.0 cm; th. of wall 1–1.1 cm.
Description: Buff clay with buff slip and black linear decoration.
Type: FS 199. Koehl Type III conical rhyton, indeterminate.
Date: LH IIIA2–B.
Context: Trench 14C, Locus 462, deep test trench, settlement.

No. 9. Body sherd of conical rhyton
Th. of wall 0.9 cm.
Type: FS 199. Koehl Type III conical rhyton, indeterminate.
Date: LH IIIA2.
Context: Area 6, FS 2122, settlement.
Bibliography: Åström et al. 1983, 110, fig. 330h.

No. 10. Body sherd, possibly from piriform rhyton
Th. of wall 0.4 cm.
Description: “Pinkish clay and slip, red decoration: four vertical wavy lines preserved”. FM 53:33.
Type: FS 200?. Koehl Type II or III piriform rhyton?
Date: LH IIIA2?
Context: F1, Well.
Bibliography: Åström et al. 1983, 21, fig. 56h, 133.

No. 11. Body sherd from lower body, possibly conical rhyton
Measurements?
Description: “buff clay, lustrous buff slip, red decoration: slightly curved vertical bands, possibly part of a grass or reed pattern”. FM 16:2.
Type: FS 199. Koehl Type III conical rhyton, indeterminate?
Context: Area 22, F6119, Room 6, layer 2, settlement.
Bibliography: Öbrink 1979, 28, fig. 150h.

No. 12. Six body and rim sherds of conical rhyton
D. of rim 12 cm.
Description: “pinkish clay with buff core, pinkish buff slip, red decoration: band on rim, horizontal bands and lines alternating on body; (b) plain rim with two horizontal grooves below rim outside and (a, c–e) body sherds, one with two horizontal grooves (joining sherd in F6265 below) and one with carination” (F6216); “fragment of rhyton with two horizontal grooves framed by bands and lines” (F6265).
Type: FS 199. Koehl Type III conical rhyton, indeterminate.
Date: LH IIIA2–B.
No. 13. Two body sherds of conical rhyton

Description: "Two body sherds, most probably from the same rhyton made of very hard, buff to pinkish-yellow clay and yellow slip, painted decoration in lustrous black to dark brown (partly worn off), consisting of broad, encircling bands with thin lines in between".

Type: FS 199. Koehl Type III conical rhyton, indeterminate.

Date: LH IIIA2–B1.

Context: Area 22, Square 1, F6517, possibly a hearth/contents of hearth, Layer 2, settlement but suggested that some of the material in this square comes from tombs.

Bibliography: Åström 1989, 78, fig. 143.

No. 14. Body sherd of conical rhyton

Description: "Part of body of conical rhyton, decorated with a scale pattern with two or three concentric circles within the scales, trace of an encircling horizontal band: yellowish-buff, very fine clay, dark brown painted decoration".

Type: FS 199. Koehl Type III conical rhyton, indeterminate.

Date: LH IIIA2–B1.

Context: Area 22, Square 1, F6521, Layer 3, havara layer, settlement.

Bibliography: Åström 1989, 79–80, fig. 147.

No. 15. Fragment of jar rhyton

Description: "Fragment of shoulder with part of hollow ring. Wall of shoulder pierced into ring interior; diameter of perforation 0.8 cm. Very pale brown clay; very pale brown slip; reddish brown paint. On ring: antithetic quadrupeds, possibly goats; bordered quirks; lozenge filling (FM 73); unidentifiable floral design on lower sides".

Type: FS 203. Koehl Type IV jug rhyton.

Date: LH IIIB1.

Context: Tomb 9.

No. 16. Body sherd, possibly from figural fish rhyton

Description: "Part of body of a relief decorated so-called fish rhyton: a horizontal, red-painted eye consisting of the oval pupil in relief (0.6 high), surrounded by two concentric ovals framing short vertical lines, above or below the eye are short vertical strokes".

Type: Koehl Type II figural: fish.

Date: LH IIIA2–B1.

Context: Area 22, Square 1, F6510, Layer 2, settlement.

Bibliography: Åström 1989, 76, fig. 158. Cf. Koehl 2006, no. 339–341; Schaeffer 1949, 222, fig. 93.4, from Ugarit.
brace this hypothesis. Firstly, it derived from a context that is thought to be mainly a backfill, i.e. a secondary context. Secondly, referring to earlier archaeobotanical research it seems that flax was not common at the Hala Sultan Tekke site in the Bronze Age: it was found neither as botanical remains nor as impressions in clay. Due to lack of information about the quantity of the samples it could be suggested that the samples were too small and flax was missed. To conclude, the flax from area A is a contamination that was found in Pit B due to soil backfilling.

Interestingly from all of the samples derived there is barely any cereal material that could indicate bread or beer consumption on the site. Out of 21 badly charred and damaged crop grains only one could be interpreted as *Hordeum* sp. (barley). It is impossible to draw any conclusions based only on one (incomplete) seed. Similarly Hjelmqvist did not record any domesticated cereal grains except for those which were found as impressions in clay and which were mainly of barley. An explanation for this situation could be in the localization of the sampled material. It is possible that the sampled area (Trenches 12A, 12B, 16A and 16B) was mainly devoted to olive oil production for household needs or other small-scale activities. The presence of many hearths brings to mind an area for crop processing would have to be undertaken in another part of the area. While of course it is possible that the consumption also took place around the hearth.

Conclusions

The majority of samples derive from T12A/B and T16A/B. This situation influences our understanding of the situation in the other trenches (T14B/C, T18A and T19B). It seems that the finds of olive stones together with pests indicate olive oil production on the household level in T16A/B. The remains of grape seeds in hearths scattered over all T12A/B–16A/B suggest use of the by-products of fruit as fuel. In the tomb area the find of flax highlights the importance of fibre or/and oil production. In summary, this preliminary archaeobotanical analysis contributes to a better understanding of the living conditions of the people of Hala Sultan Tekke.

Bibliography

Ekman, J. 1977. 'Animal bones from a Late Bronze Age settlement at Hala Sultan Tekke, Cyprus, in P. Åström et al., Hala Sultan Tekke 3 (SIMA, 45:3), Göteborg, 166–174.

Fischer, P.M. 1986. Prehistoric Cypriote skulls (SIMA, 75), Göteborg.

Margaritis, E. & M. Jones 2006. ‘Beyond cereals: Crop processing and Vitis vinifera L. Ethnography, experiment and charred grape remains from Hellenistic Greece’, *JAS* 33, 784–805.

Smith, A.H. 1925. *Great Britain: British Museum (Department of Greek and Roman Antiquities)*. (CVA Great Britain, I), London.

